College Of DuPage

Implementation Date: Fall/05

ACTIVE COURSE FILE

R	*Curricular Area	Physics	Course Number:	PHV2111
Ь.	Cumculai Alea.	FIIYSIUS		

Course Title: Physics for Science and Engineering I

Semester Credit Hours: <u>5</u> Lecture Hours: <u>4</u> Lab Hours: <u>2.5</u> Clinical Hours: <u>0</u>

*Changes from the present course must be accompanied by a yellow Course Revision or Deletion Form.

Course description to appear in catalog:

Calculus-based study of classical linear and rotational kinematics and dynamics, including work, energy, impulse, momentum, collisions, periodic motion, and wave motion.

Prerequisite: Completion of or concurrent enrollment in MATH 2232

A. General Course Objectives

Upon successful completion of this course the student should be able to do the following:

- 1. Describe the relationship between different units of measure
- 2. Interpret and explain the relationship between an object's displacement, velocity, and acceleration in multiple dimensions
- 3. Calculate the effect of external forces on an object's motion using Newton's Laws in multiple dimensions
- 4. Create and label simple free-body diagrams in multiple dimensions
- 5. Explain and apply the relationship between work and kinetic energy
- 6. Calculate the effect of external forces on an object's motion using work-energy methods in the case of both conservative and non-conservative forces in multiple dimensions
- 7. Calculate the effect of both static and kinetic friction on the motion of an object using both direct force/acceleration methods and work/energy methods
- 8. Identify and calculate the different forms of energy in classical dynamics (potential, kinetic, and mechanical)
- 9. Explain and apply the relationship between impulse and momentum
- 10. Calculate the effect of external and internal forces on a system of objects using impulse and momentum methods in multiple dimensions
- 11. Identify situations in which a system's momentum is conserved
- 12. Predict the motion of a system of particles using center-of-mass methods
- 13. Formulate the outcome of collisions of particles in both elastic and inelastic cases
- 14. Interpret and explain the relationships among an object's rotational displacement, velocity, and acceleration in multiple dimensions
- 15. Create and label simple free-body diagrams for rotational situations
- 16. Formulate the effect of external torques on an object's motion using Newton's Laws in rotational form
- 17. Calculate kinematical characteristics of an object undergoing simple harmonic motion using the equations of motion for force, position, velocity, and acceleration

- 18. Formulate the kinematical characteristics of a sinusoidal wave based on data in both graphical and numerical form
- 19. Interpret the motion of a sinusoidal wave and explain the superposition principle.
- 20. Calculate the resonant frequencies and wave lengths for both transverse and longitudinal waves given physical information about the situation
- 21. Apply the superposition principle to calculate positions of maximum destructive and constructive interference for waves
- 22. Calculate sound wave intensities and intensity levels given physical information about the situation
- 23. Calculate Doppler shifts and beat frequencies

B. Topical Outline

- 1. General/Measurement
 - a. Units of measurement
 - b. Change of units and compound units
- 2. Motion in One Dimension
 - a. One-dimensional kinematics (position, velocity, acceleration)
 - b. Average and instantaneous kinematics
 - c. Relations between kinematic variables
 - d. Special cases-constant velocity and constant acceleration
- 3. Vectors and Vector Operations
 - a. Vectors and vector algebra
 - b. Commutivity and associativity for addition and subtraction
 - c. Resolution and vector components
 - d. Multiplication by a scalar
 - e. Vector operations and components
 - f. Two vector scalar (dot) products and vector (cross) products
- 4. Motion in Two and Three Dimensions
 - a. Position, velocity, and acceleration as vectors
 - b. Two and three dimensional kinematics
 - c. Projectile motion
 - d. Uniform circular motion and centripetal acceleration
 - e. Relative motion
- 5. Force and Motion
 - a. Dynamics and Newton's Laws of motion
 - b. Inertial mass
 - c. Principle of linear superposition
 - d. Applications of Newton's Laws (tension, friction, normal forces)
 - e. Radial and tangential components of acceleration
- 6. Energy and Work
 - a. Work-energy theorem
 - b. Calculation of work done by different forces
 - c. Applications of the work-energy theorem
 - d. Conservative and non-conservative forces
 - e. Power
 - f. Conservative and non-conservative forces and potential energy
 - g. Gravitational and spring potential energies
 - h. Conservation of mechanical energy
 - i. Applications of energy conservation
 - j. Graphical representation of energy conservation

- 7. Systems of Particles
 - a. Measurement and calculation the position of the center of mass
 - b. Velocity and acceleration of the center of mass
 - c. Relative motion-frames of reference
 - d. Galilean transformation equations
 - e. Review of Newton's Laws for macroscopic body motion
- 8. Impulse/Momentum
 - a. Impulse-momentum theorem for one and two or more particles
 - b. Conceptual meaning of impulse
 - c. Net impulse, internal forces, and momentum conservation
 - d. Vector momentum conservation
 - e. Applications of momentum conservation
- 9. Collisions
 - a. Elastic Collisions
 - b. Inelastic Collisions
 - c. Macroscopic motion and the center of mass
 - d. Collisions in two dimensions
- 10. Rotation Kinematics
 - a. Rotational kinematics and dynamics of a particle
 - b. Simple applications of particle rotational dynamics
 - c. Rotational dynamics for a rigid object
- 11. Rotational Dynamics
 - a. Definition of moment of inertia, net external torque
 - b. Applications of rotational dynamics
 - c. Rotational kinetic energy and energy conservation
 - d. Angular momentum conservation
- 12. Equilibrium and Elasticity
 - a. Requirements for equilibrium
 - b. Examples of equilibrium
 - c. Elasticity of materials
 - d. Stress-strain relationships
- 13. Oscillations
 - a. Hooke's Law and simple harmonic motion (SHM)
 - b. Examples of SHM
 - c. Damped and forced harmonic motion
- 14. Waves
 - a. Waves and their mathematical description
 - b. Speed of a string wave
 - c. Sinusoidal waves and wave trains
 - d. Superposition principle and standing waves
 - e. Longitudinal and transverse waves
 - f. Waves in two and three dimensions
 - g. Interference of waves
 - h. Intensity and intensity level
 - i. Doppler shift and beat frequency

C. Methods of Evaluating Student:

Students will be evaluated using a combination of grades from homework, quizzes, tests, and labs.

Initiator

Date

Division Dean

Date

Sponsor

Date